
thermal conduction, diffusion, and thermal diffusion), but at present the lack of the neces- 
sary data does not give a quantitative description when one considers irreversibility in the 
Heaviside approach. 

Following Planck, we may formulate two topics whose elucidation whould improve substan- 
tially our concepts on irreversibilty (in Planck's or Heaviside's approaches). 

i. Whether the simplicity in a gaseous system (homogeneous mixtures filling all the 
available volume) is the result of interaction between equilibrium thermal radiation and mat- 
ter, i.e., whether the gas molecule motion and distribution is Brownian motion, whose cause 
arises from interaction with radiation (localized) in matter and equilibrium beteen the local- 
ized radiation and that entering from outside? 

2. Whether the energy spectrum for a blackbody (Planck's radiation law) is a X 2 dis- 
tribution for the unobservable elementary interactions (of radiation and matter), which are 
subject to a Gaussian distribution, which appears attractive in view of the resonant form 
of interaction between matter and radiation. 

i. 

2. 
3. 
4. 
5. 
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NEW CONSEQUENCES OF THE LINEAR MODEL OF THE PARAMETRIC EQUATION OF STATE 

Yu. E. Sheludyak and V. A. Rabinovich UDC 536.76:536.44 

New possibilities of applying the linear model of the parametric equation of state 
are shown; in reduced coordinates, this model is associated with a single determin- 
ing similarity parameter b depending on the compressibility coefficient of the in- 
dividual materials at the critical point Zcr. 

Analysis of the theoretical models and experimental data permits the hypothesis that the 
series of critical-amplitude complexes 

AF/B ~, DFB ~-1, f / f ' ,  A'/A, A~/A (1)  

i s  u n i v e r s a l  [ 1 ] ,  bu t  o n l y  t h e  u n i v e r s a l i t y  o f  t h e  complex 

A f , / B  z ~= ~ (2) 

has  been r i g o r o u s l y  p roven  [ 2 ] .  As w e l l  as  t h e  c o n v e n t i o n a l  n o t a t i o n  f o r  c r i t i c a l  a m p l i t u d e s  
[ 3 ] ,  A 1 d e n o t e s  t h e  jump in  i s o c h o r i c  s p e c i f i c  h e a t  a t  t h e  b o u n d a r y  c u r v e  and A 2 i s  t h e  c o r -  
r e s p o n d i n g  q u a n t i t y  f o r  t h e  s p e c i f i c  h e a t  C v a t  t h e  bounda ry  c u r v e  f rom t h e  s i d e  o f  t h e  s i n g l e -  
phase  r e i g o n .  

A l i n e a r  model  o f  t h e  p a r a m e t r i c  e q u a i t o n  o f  s t a t e  i s  w i d e l y  used  t o  d e s c r i b e  t h e  the rm-  
odynamic  properties of the individual materials in the critical region [4] 

A~ = ar~O (1 - -  02); 

Ap = kr~O; (3) 

t = f( l--b202),  

where A~ = (~ - ~a)/(PcrVcr); ~ is an analytical function of the temperature; A0 = ~ - 1 = 
P/Pcr -- i, t = T -- 1 = T/Tcr - i. On the basis of the isolated curves, the variable O has 
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fixed values: 0 = 0 at the critical isochore; 0 = • at the critical isotherm; 8 = • at 
the boundary curve. 

The critical indices of the individual materials are universal constants [5]; therefore, 
the equation of state in Eq. (3) only includes three fitting parameters: a, k, b. 

In most of the published works, it was assumed that a and k are individual constants 
of the material, and b has the universal value 

bB = y -- 2~ ( 4 ) 
? (1 -- 2~) 

In this particular case, the expressions obtained from Eq. (2) for the various thermodynamic 
functions are simplified. For example, the equations for the derivative (3D/3P)T and the 
singular part of the specific heat C v take the form 

(0--~9~) P Z e r = a r ' l l  + 0 2 [ ~ ! 2  ~)  1 ] } ;  ( 5 )  
�9 TPcr  k 

1)(1 (6) c~ ing~  = a k r - ~  V (? - -  - -  2p) 
R Z c ~  2a  (? - -  2~) 

In [6, 7], in writing the equation of state of water in the critical region, all three 
coefficients of a, k, b of the linear model in Eq. (3) were fitting parameters. In this gen- 
eral case, the expressions for the thermodynamic functions become more complex. The equa- 
tions for the derivative (3D/3P)T and the singlular part of the specific heat C v take the 
form 

where 

O~x) 92e~:= a rV 1 q- OZ[b2(2[~8-- l ) - - 3 ] q -  0~bZ(3- -2~8)  . ( 7 )  
r P e r  k -  1 - -  OZb z (1 - -  2[~) ' 

Co + 02c~ + 0ac~ + 06c6 csing j o) _ akr_~ 
RZcr~ [1 - -  O~b 2 (1 - -  2~)1 a 

co = - -  (2 - -  ~)(1 " ~ ) / o ;  

c2 = fo bz (1 - -  213)(2 - -  o0(1 - -  a -1- 2[5) - -  f~y (y - -  1); 

ca = fo.bzv (1 - -  215)(I - -  (z) --[- J:a (V - -  215)(a + 4[~ - -  1); 

c.  = Ab~ (v - -  1)@ - -  2[3)(1 - -  2~); 

t i =  b ~ v + 2 ~ - - v  ; 
2b~o~ (1 - -  00(2 - -  o 0 

f~ . . . . .  v - -  2~ 1 - -  2~ . 
2bzo~ (1 - -  (z)' 2 (1 - -  a) 

lca = _ 1 - -  2~ 
2~ 

Expressions for the critical amplitudes are obtained from eqs. (3), ( 7 ) ,  a n d  ( 8 )  

(8 )  

( 9 )  

( lO)  

(11)  

(12)  

(13)  

(14) 

( i 5 )  

A = akco = ak ( "~ - -  26 "7 
2bao~ 2b ~ 

k 
B =  (b z _ l ) f ~  ; 

k 
F - - - - - - - ;  

a 

__) ; ( 1 6 )  

(17) 

( 1 8 )  

a b6-a D = ~ (b ~ -  1) . ( 1 9 )  

E q u a t i o n s  ( 1 6 ) - ( 1 9 )  d e p e n d  on  t h e  c r i t i c a l  i n d i c e s  a n d  a l l  t h r e e  c o e f f i c i e n t s  a ,  k ,  b .  C o m b i n -  
i n g  the critical amplitudes in the form of the complexes in Eq. (i), expressions which do 
not contain a and k are obtained 
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A F  _ ( b  2 _  i)2f~ ?--2[~--b2a2! ; 
B2 2b'~ ( 20 ) 

D F B  6-1 _ b ~ 3  
(b 2 _ 1)'e-' ' (21)  

F 2 
- -  - -  7 

r '  (b z -  1) v-~ [1 --bZ(1 --2~)1 (22)  

A' fo + fi + f,, 
A fo( b 2 -  1) 2-~ ' (23)  

A2 (Co + c 2  q- c~ q- c6)(b z - -  1) = 
A - -  C o [ 1 - - b 2 ( 1 - - 2 , 6 ) 1 3  ......... ( 2 4 )  

Thus, the complexes of the critical amplitudes in Eq. (I) are a function of b, and take 
univrsal values only in the case where b is universal. Note that, with the classical indices 
p = 1/2 and u = i, Eqs. (21) and (22) do not depend on b, and take the values DFB 5-I = i, 
F/F' = 2 coinciding with the predictions of the Van der Waals equation [i], i.e., in the gen- 
eral case, transition in the limit from the linear model to the predictions of classical theory 
is seen. 

Differentiating Eqs. (20)-(24) with respect to b, it may be established that they have 
a maximum or minimum at the values of b 2 determined by Eq. (4). In Fig. i, the dependence 
of the critical-amplitude complexes Q on b 2 referred to the value of the complex at the extremal 
point is shown. These curves are calculated for the theoretical indices ~ = 0.324 and u = 
1.24. With • deviation of b 2 from Eq. (4), the values of the various critical-amplitude 
complexes vary by 1-4%, and with • deviation of b 2 from the extremal point, by 5-30%. 

The values of b 2 obtained in [6, 7] are higher than for Eq. (4) by 6.6% [6] and 1.1% 
[7]; these values of the critical-amplitude complexes practically coincide with their values 
at the extremal point. Thus, variation of all three coefficients a, k, b of the linear model 
of the parametric equation of state is not proven, and the universality of the complexes in 
Eq. (i) has not been refuted. 

At the same time, analysis of the general expressions for the critical amplitudes in 
Eqs. (16)-(19) and their complexes in Eqs~ (20)-(24) reveals new possibilities of this equa- 
tion of state, if it is assumed that the coefficients a and k have universal features, while 
b is an individual constant of the material uniquely related to the compressibility coeffi- 
cient at the critical point Zcr. 

In this case, the relative critical amplitudes 

a D *  = D ,k~ A *  -= A / (ak ) ,  B *  = B / k ,  r *  = f -~- , a 

depend only on b. The curves of the relative critical amplitudes E* on b according to Eqs. 
(16), (17), and (19) are shown in Fig. 2. The dependences of A*, B*, D*, on b 2 are of the 
same form as the dependencs of A, B, D on the compressibility coefficient at the critical 
point Zcr [i]: the critical amplitudes A and A*, B and B* are decreasing functions, while 
D and D* are increasing functions. According to the predictions of the theoretical models, 
the critical amplitude F is a weakly increasing function of Zcr, while the variation in F is 
comparable with the error in its experimental determination [i]; in the linear model of the 
parametric equation of state, F* = i. 

In the region b 2 = 1.1-1.4, B* is close to the value of B in the region Zcr =0.22-0.29 
[8]. This permits the assumption that k = 1 or is close to unity. 

Knowing the dependence B(Zcr), a relation between the coefficient b 2 and the compres- 
sibility coefficient at the critical point Zcr may be established from Eq. (17). The de- 
pendence b2(Zcr ) calculated from the data of [i] with k = 1 and p = 0.324 is shown in Fig. 
3, where the dashed curves correspond to the limits of variation in b 2 with • deviation 
in critical amplitude B from the value of [i]. The value b 2 = 1.356 determined by Eq. (4) 
when p = 0.324 and u = 1.240 corresponds to Zcr ~ 0.29 characteristic of gases with spher- 
ically symmetric molecules. 
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Fig. i. Dependence of the critical-amplitude complexes Q re- 
ferred to the value at the extremal point on b2: DF'B6-Z; 2) 
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Dependence of the relative critical amplitudes on be: i) i - B*; 2) A*; 

Fig. 3. Dependence b2(Zcr ) calculated from data [i] on the critical amplitude B 
when k = I and 8 = 0.324. 

As follows from Eq. (18), a is determined by the critical amplitude of the isothermal 
compressiblity: a = kF = 17.12 when F = 0,0584 [9]. 

The open and filled points in Fig. 2 correspond to the dependence of A* and D*, respec- 
tively on b = according to the data of [i] with k = i and a = 17.12. The values of D* are 
in good agreement with those calculated from Eq. (19), while A* is basically higher than the 
values calculated from Eq. (16). The deviation increases with decrease in Zcr and reaches 37% 
when Zcr = 0.22. The reason for these deviations may be the method of estimating the critical 
amplitude adopted in [i]: A was determined from B and F in the complex AF/B 2 with a "univer- 
sal" value of the coefficient b 2 in Eq. (4). However, direct experimental estimates of A 
at small Zcr are closer to those calculated from Eq. (16) than to the result of [i] and the 
value A = 33.5 obtained in [7] for water. Data on the velocity of sound in water (Zcr = 0.229) 
give A = 26.7 [i0] when ~ = 0.ii. Calculation from Eq. (16) with k = i, a = 17.12, and a = 
0.112 gives A = 25.6; with identical ~, the difference between the critical amplitudes A is 
even smaller. 

Thus, as well as the two methods of describing the critical region of the individual 
materials employed within the framework of the linear model of the parametric equation of 
state, one more may be used: that in which the coefficients a and k are universal constants 
of the equation, and b characterizes the individual properties of the material. In this ap- 
proach, the linear model of the parameteric equation of state is an equation of state in re- 
duced variables, with one determining similarity criterion. The critical amplitudes and their 
complexes in this equation are universal functions of the similarity parameter b. 
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NOTATION 

~, ~, y, 6, critical indices; A, A', A I, A2, B, F, F', D, critical amplitudes; a, k, 
b, coefficients of the linear model of the parametric equation of state; r, e, parameteric 
variables determining the distance to the critical point and the path by which it is ap- 
proached; p, chemical potential; p, density; T, temperature; p, pressure; Zcr = PcrVcr/RTcr, 
compressibility coefficient at the critical point; R, universal gas constant. 
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MEASUREMENT OF THE THERMAL DIFFUSIVITY IN CONDITIONS OF SUBSONIC HEATING. 

CALCULATION OF DYNAMIC CORRECTION 

V. I. Gorbatov, S. A. Ii'inykh, 
S. G. Taluts, and V. E. Zinov'ev 

UDC 536.2.08 

Corrections associated with the rate of change in mean temperature are calculated 
for the dynamic method of plane temperature waves. It is shown that the correction 
is only significant close to the points of phase transition and at heating rates 
above I000 K/sec. 

The dynamic method of plane temperature waves was proposed in [i] for the investigation 
of the thermophysical characteristics of materials. A sample in the form of a thin plane- 
parallel plate is heated at a rate of up to i000 K/sec with a modulation period of the temp- 
erature wave of no more than I0 msec, which allows the thermal diffusivity to be measured 
over a broad temperature range in a time of less than 1 sec. The creation of this method 
permits a reduction by two or three orders of magnitude in the time to measure the tempera- 
ture dependence of the thermal diffusivity and allows informtion to be obtained in the temp- 
erature range where the sample cannot retain its form and state for a long time, i.e., close 
to phase and structural transformations. However, the possibility of using the information 
obtained for determining the temperature dependence of the thermophysical characteristics 
in this temperature range requires separate theoretical investigation. The point is that 
all the traditional nonsteady methods are based on solving linear or linearized heat-conduction 
equation and therefore the working region of the temperature intervals is always limited. 
Expansion of the region of application of nonsteady methods requires the solution of complex 
nonlinear heat-conduction equations, taking account of all the factors responsible for this 
nonlinearity. Analytical methods of solving problems of this type have not yet been adequate- 
ly developed. At the same time, computer solution of such problems by numerical methods 
does not present any difficulties. 

All the results of the present work are obtained using a "machine" experiment: essen- 
tially, the phhsical process used to measure the thermophysical coefficients is replaced by 
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